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Perturbation Molecular Orbital Treatment 
of Free-Radical Hydrogen-Abstraction Reactions 

Sir: 

The successful PMO treatment1 of the reactivity and reg-
ioselectivity in dicyanomethyl radical additions to alkenes and 
of the reactivity in CF3- radical additions to alkenes using 
MINDO/3 data2 4 prompted us to extend this approach to 
hydrogen-abstraction reactions for which kinetic data are 
available,5 e.g., the reactions of CF3- and CH3- radicals with 
alkanes.6 

For the reaction of each radical we calculated Fukui's 
delocalizabilities £>JR),7-8 according to 

/,(*>. f . 
unocc 

q - a 
" ( - /? ) 

This treatment implies that only the mutual interactions of the 
radical SOMO and the AO of the hydrogen to be abstracted 
in all occupied and unoccupied MO's of the alkane are con­
sidered. The resonance integral 8 for each series of abstractions 
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Figure 1. Activation energy (£ a) for hydrogen abstraction from various 
alkanes at the marked positions (a) by CH3-10 and (b) by CF3-1' radicals 
vs. delocalizabilities D\K) (in units of /3). 

Figure 2. Logarithm of relative rates of hydrogen abstraction13 (In kK\) 
from 1-fluorobutane by chlorine atoms vs. delocalizability (Z)fR)) (in units 
of/3) as calculated for the shown conformations. 

was taken as constant. This approximation may be justified 
on employing the same reagent (radical) and similar sub­
strates.9 The results of the calculations are listed in Table I. 

As can be seen from Figures 1 a and 1 b there is a fairly good 
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Table I. Arrhenius Activation Energies (£A) and Delocalizabilities 
(Z)JR)) for H abstractions from alkanes by CH3- and CF3- Radicals 

alkane0 

CH4 
CH3CH3 

CH3CH2-
C*H3 

CH3C*H2-
CH3 

CH3CH2CH2-
C*H3 

CH3CH2C*-
H2CH3 

(CH3)3C*H 
C(CH3)4 

EA-
(CH3-)" 

60.9 
50.0 
48.7 

43.3 

49.1 

40.7 

34.4 
50.4 

£><R)(CH3-)/' 
0 

— 1.10 X 10-' 
— 1.16 X 10-' 
— 1.17 X 10"1 

-1.20 X 10-' 

-1.17 X 10"1 

-1.20 X 10"1 

-1.24 X 10"1 

— 1.17 X 10-' 

EA-
(CFy)" 

46.9 
35.2 

26.8 

23.9 

19.7 
35.2 

Z><R)(CF3-),
e 

P 
-1.13 X 10-' 
-1.18 X 10-' 

-1.26 X 10-' 

-1.25 X 10-' 

-1.26 X 10-' 
-1.20 X 10-' 

" * indicates the hydrogen abstracted. * For gas-phase reactions 
in kJ mo]-1.10 ' With ^sOMo(CH3-) = -4.23 eV.2-" d Gas-phase 
results in kJ mol-1 as cited in ref 11. e With £<JOMO(CF3-) = -6.25 
eV.2" 

Table II. Hydrogen Abstractions from 1-Fluorobutane by Chlorine 
Atoms. Logarithm of the Relative Rate Constants (In kre\) and 
Delocalizability (D<R))6 for Two Conformations 

In kTQ\" 
£><R),/3 180°*< ' 

Dl
r
R),0 6Oobc 

C, 

-0.105 
-1.57 X 

io-1 

-1.58 X 
IO"1 

C2 

0.531 
-1.41 X 

io-1 

-1.43 X 
10"' 

C3 

1.308 
-1.48 X 

IO"1 

-1.51 X 
IO"1 

C4 

0 
-1.38 X 

10-' 
-1.40 X 

io- ' 

" From the relative selectivities of chlorination in the gas phase at 
78 0C.13 * Values for the 180 and 60° conformations at the C,-C2 
bond. All other C-C bonds with 180° conformation. c With 
£soMo(Cl-) = -8.34eV.2-4 

linear correlation between the activation energies for H ab­
straction by CH3- and CF3- radicals and the delocalizabili­
ties. 

Thus the principle of maximum overlap7 using MINDO/3 
d a t a 2 " may serve well in predicting the relative activation 
energies and (in consideration of the similar A factors10'1') the 
relative rates of free-radical hydrogen-abstraction reactions. 
Obviously steric influences12 can be neglected. 

As shown with 1-fluorobutane as an example (Table II, 
Figure 2), a polar factor only seems to be important for ab­
straction reactions at the halogen-bearing C atom (Ci). 
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Theoretical ab Initio Calculations of Deformation 
Densities in Some Binuclear Metal Complexes 

Sir: 

The ab initio Hartree-Fock method has been applied re­
cently to the calculation of electronic deformation density 
distributions' in the vicinity of transition metal atoms.3'4 We 
report here the first theoretical calculations of deformation 
densities for binuclear metal complexes immediately compa­
rable with experimental works. Deformation density maps were 
obtained for M(Tr-C5H5)Fe(CO)2I2 (1) and (^-C 5H 5Ni) 2-
C H = C H (II). The molecular density is issued from ab initio 
calculations5 at the SCF level with double-f basis sets for the 
valence shells. The atomic density distributions were calculated 
for each atom with the same basis set as that used in the mo­
lecular calculation. The atoms were taken to be neutral and 
in their ground states. The contours are based upon a grid 
having an increment of 0.2 au. Positive and negative contours 
were drawn with an interval of 0.03 e (au ) - 3 from 0 to ±0.18 
e ( a u ) - 3 9 

Bis(dicarbonyl-7r-cyclopentadienyliron) (I). Figure 1 shows 
the deformation density distribution for I in the plane con­
taining the iron atoms and the terminal carbonyls. A com­
parison with an experimental deformation density map drawn 
for the same plane8 shows that all significant features of the 
experimental map are correctly reproduced,19 especially the 
four density peaks around each metal separated by a negative 
zone colinear to the Fe-CO bond. The lack of significant fea­
tures in the region located around the Fe-Fe line, noticed about 
the experimental deformation density map,8 is also confirmed. 
The absence of residues in the metal-metal direction seems to 
be consistent with the fact that our molecular SCF wave 
function does not display any significant direct metal-metal 
bond. This conclusion is based upon the small negative value 
of the Mulliken overlap population between iron atoms10 and 
upon an analysis of the valence shell molecular orbitals, 
especially of the HOMO which exhibits a strong back-bonding 
character from the dy: orbital of iron toward the bridging 
carbonyls.12 This analysis illustrates the concept of delocal-
ized multicentered linkages of bridging carbonyl ligands to two 
or three metals proposed by Chini13 and Braterman14 and al­
ready corroborated by SCF calculations on Co2(CO)g15 and 
Fe3(CO)12.11 

7r-Acetylenebis(cyclopentadienylnickel) (II). This complex 
is supposed to present a direct metal-meta! bond because of 
electron counting and of the very short metal-metal distance 
(2.345 A).7 However, the nature of this bond "straight" or 
"bent" away from the acetylene18 is still controversial. The 
"bent" metal-metal bond model was found by Teo and co­
workers to correspond to the character of the HOMO in several 
Fe2(CO)6X2-type dimers.16 However, experimental density 
deformation maps obtained by Wang and Coppens for II ex­
hibit density accumulation with two maxima along the Ni-Ni 
line, thus favoring the "straight" bond model.7 We depict in 
Figure 2 the electron density contour map obtained for the 

0002-7863/78/1500-7740S01.00/0 © 1978 American Chemical Society 


